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Abstract

This paper investigates the influence of mean areal rainfall estimation errors on a spe-
cific case study: the use of lumped conceptual rainfall-runoff models to simulate the
flood hydrographs of three small to medium-sized catchments of the upper Loire river.
This area (3200 km2) is densely covered by an operational network of stream and rain
gauges. It is frequently exposed to flash floods and the improvement of flood fore-
casting models is then a crucial concern. Particular attention has been drawn to the
development of an error model for rainfall estimation consistent with data in order to
produce realistic streamflow simulation uncertainty ranges. The proposed error model
combines geostatistical tools based on kriging and an autoregressive model to ac-
count for temporal dependence of errors. It has been calibrated and partly validated
for hourly mean areal precipitation rates. Simulated error scenarios were propagated
into two calibrated rainfall-runoff models using Monte Carlo simulations. Three catch-
ments with areas ranging from 60 to 3200 km* were tested to reveal any possible links
between the sensitivity of the model outputs to rainfall estimation errors and the size of
the catchment. The results show that a large part of the rainfall-runoff (RR) modelling
errors can be explained by the uncertainties on rainfall estimates, especially in the case
of smaller catchments. These errors are a major factor limiting accuracy and sharpness
of rainfall-runoff simulations, and thus their operational use for flood forecasting.

1 Introduction

Despite decades of developments and testing, rainfall-runoff (RR) models are still sel-
dom used by operational flood forecasting services. This is particularly true in flash-
flood prone areas where accurate RR simulations would yet be necessary to compute
short lead-time forecasts. The lack of accuracy and robustness of RR models, while
not striking (see Andreassian et al., 2006, for a review of models and performances),
remains critical for some applications.
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This arises the question of the sources of uncertainties affecting RR simulations:
what are the major factors limiting the accuracy of RR simulations? On which ones a
particular attention has to be drawn? Is there any possibility of improvement of simu-
lations? A better insight into these questions is necessary to give some orientations
to future research works on RR modelling. It will also improve the assessment of the
capabilities and limits of the existing models.

Among the various sources of uncertainty affecting RR modelling (Melching, 1995),
uncertainties on computed precipitations play a particular role (Sun et al., 2000; Bar-
dossy and Das, 2008). Rainfall rates are the main input data of RR models and, in
that sense, are one of the first factors controlling the accuracy of RR simulations. The
general issue of the impact of rainfall inputs on RR simulation accuracy encompasses
at least two main questions:

— the level of spatial and temporal discretisation needed to represent accurately the
RR processes dynamics in the hydrological models, generally assessed through
sensitivity analyses (Michaud and Sorooshian, 1994; Vischel and Lebel, 2007;
Segond et al., 2007),

— the assessment of the intrinsic quality of the mean areal precipitation (MAP) esti-
mated over the whole considered catchment in the case of lumped RR models (or
over each of the sub-units defined in distributed models); and then the assess-
ment of its consequences on RR simulations.

The first question is linked to the debate about the relative merits of distributed versus
lumped hydrological models. It is not the focus of this paper but will be mentioned in the
conclusion section. The answer to the second question depends on the rainfall mea-
suring techniques. The weather radar coverage has dramatically increased over the
last decades giving access to measurements at high spatial and temporal resolutions.
The radar signal treatment methods have significantly been improved (Krajewski and
Smith, 2002; Gourley and Vieux, 2006; Chapon et al., 2008). However, quantitative
precipitation estimates still present difficulty. Research works are ongoing to evaluate
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radar rainfall estimation errors and the suitability of radar data for hydrological applica-
tions (Carpenter et al., 2001; Borga, 2002; Carpenter and Georgakakos, 2004; Borga
et al., 2006; Cole and Moore, 2008). But in many cases, quantitative precipitation es-
timates used as input of hydrological models and especially flood forecasting models
still rely on raingauge measurements. It is especially the case for the upper Loire area,
the selected study area, where due to implementation problems, no quantitative precip-
itation estimates can be retrieved from the radar data. The question of the assessment
of the uncertainties of MAP estimated through raingauge measurements is therefore
remaining active. Moreover, an accurate assessment of both the associated uncertain-
ties and their impact on RR simulations would define a reference state to evaluate the
gains due to improvements of rainfall measurement techniques.

When raingauge data are used to estimate MAP, the major source of input uncer-
tainty comes from the lack of representativeness of a discrete set of gauges of a
network (Dulal et al., 2006; Refsgaard et al., 2006; Rode and Suhr, 2007; Villarini
et al., 2008) and from the necessity to interpolate the rain rates between these points.
Beyond the acknowledgment of the importance of MAP estimation uncertainties, a de-
tailed assessment of their possible impact on the RR simulations has two main practical
objectives:

— To evaluate the possible gains that could be obtained through an improvement of
the rainfall measuring techniques especially the radar system.

— To determine the rainfall estimation uncertainty level to be able to turn from the
standard deterministic hydrological forecasting approach (disappointing since it
frequently fails to deliver correct forecasts), to a stochastic approach taking into
account all the possible streamflow evolutions given the uncertainties about actual
rainfall amounts.

Most of the previous studies on MAP uncertainty propagation in RR models were ei-

ther empirical or purely theoretical sensitivity analyses. Empirical analyses are gener-

ally based on the comparison of various interpolation approaches (Creutin and Obled,
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1982; Lebel et al., 1987; Johansson, 2000) or based on under-sampling of relatively
dense raingauge networks (Anctil et al., 2006; Balme et al., 2006; Bardossy and Das,
2008). Theoretical analyses are based on an a priori chosen error model to corrupt
the computed MAPs (Xu and Vandewiele, 1994; Paturel et al., 1995; Nandakumar and
Mein, 1997; Carpenter and Georgakakos, 2004; Oudin et al., 2006). In that case, no
validation of the error model is processed to ensure consistency with the available data.

The main contribution of the present work is the effort done to build, calibrate and
validate a realistic error model on MAP estimates. The hereafter presented devel-
opments around the definition and validation of a rainfall estimation error model may
appear sophisticated. This sophistication is nevertheless not a scientific gadget: the
realism of the error model is a necessary condition to draw any valuable conclusion
from the propagation of these errors into RR models. Inspired by the methodology
used by Storm et al. (1989) and Datin (1998), the proposed approach relies on geosta-
tistical tools. The selected method for evaluating MAP errors and their impact on the
simulated streamflows is composed of three steps.

1. Calibration and validation of an hourly rainfall interpolation error model.

2. Calibration and validation of a temporal dependence model for these errors to be
able to produce realistic hourly MAP error series.

3. Use of Monte Carlo simulations of rainfall scenarios based on the calibrated error
model and propagation of these scenarios into two selected lumped RR models.

The selected RR models are modified versions of the GR4J model (Perrin et al., 2003)
and of TOPMODEL (Beven and Kirby, 1979; Mathevet, 2005). Various catchment ar-
eas are considered to reveal a possible link between the sensitivity to MAP uncertain-
ties and the considered catchment area.

The paper is structured as follows. The study area and data sets are presented
in Sect. 2. The interpolation method and principles of the proposed error model are
exposed in Sect. 3. The cross-validation approach and the obtained error model val-
idation results are presented in Sect. 4. Section 5 is devoted both to the propagation
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of the MAP errors into the RR models and to the interpretation and discussion of the
obtained results. Conclusions from the study are summarised in Sect. 6.

2 The study area and data

The upper Loire River is located in the northern part of the Cevennes-Vivarais Hydro-
Meteorological Observatory region (Delrieu, 2003; Delrieu et al., 2005). The catchment
of the upper Loire River at Bas-en-Basset covers 3234 km? (Fig. 1). It is an upland,
mainly rural area with dominantly plutonic, metamorphic and locally volcanic bedrocks.
The soils are relatively shallow (from a few centimeters to a few meters, on average
less than one meter deep). The elevation of the catchment ranges from about 450 to
1700m a.s.l.

The study area is exposed to various climatic influences. Mediterranean storms in-
duce flash-floods that affect headwater catchments in the south-eastern part of the
area. This explains the very high 10-year flood specific flow values of these catch-
ments, which range from 0.4 to 5.6 m3s™' km™2 (Table 1). Conversely, the north-
western part of the upper Loire river basin is influenced by a typical oceanic climate,
with moderate flood events. Due to the altitudes and the mid-mountain climatic influ-
ence, snowfall and snowmelt may sometimes be non negligible elements of the water
budget in the south-eastern part of the upper Loire. Nevertheless, they have little influ-
ence on the major flood events that predominantly occur in autumn and which are here
the main concern. Consequently, in this study, no snowmelt routine is implemented in
the tested RR models.

The density of the raingauge network has progressively increased over the years:
the number of automatic raingauges has grown from six in 1977 to 40 at present. The
automatic raingauge network now in operation, developed for flash flood forecasting
purposes, is relatively dense (about 1/80 km2) if compared to the average density of
automatic raingauges in France (1/500 km2). Moreover, the upper Loire hydrologic
network of rain and stream gauges is considered to be among the best-maintained
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operational networks in France. A weather radar system, located in the North-West
of the upper Loire catchment, has been in operation since 1996. But due to techni-
cal problems, such as the high elevation of the radar (1116 m a.s.l.), ground clutter,
and masking effects caused by the surrounding trees and topography of the region, it
has not yet been possible to use weather radar to estimate rainfall rates. Mean areal
precipitation (MAP) estimations can therefore only rely on the raingauge network.

Three nested catchments have been selected for this study. This choice has been
dictated by the quality and length of the available streamflows series (20 years for
Rieutord, 27 years for both Chambon-sur-Lignon and Bas-en-Basset), their location
in areas affected by flash floods, and the desire to cover a large range of catchment
surfaces (62, 139, and 3234 km2). Some intermediate-sized catchments are available
but affected by dam management. The main characteristics of these three catchments
are summarised in Table 1.

3 Methodology for estimating precipitation uncertainties
3.1 A geostatistical framework

Geostatistical methods and especially kriging are now generally accepted as the most
effective approaches to interpolate point rainfall measurements. They have been widely
used and tested in the past and appear to deliver reasonable rainfall estimates, partic-
ularly in the case of sparse networks (Lebel et al., 1987; Haberlandt, 2007).

Kriging is basically a linear interpolation approach. The estimated values of point
rainfall amounts P;(x,) at any location x, as well as mean areal precipitation MAP(S)
over a given domain S are, at any time ¢, considered as linear combinations of the
point rainfall amounts F; ; measured by the raingauges of the surrounding raingauge
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network (Egs. 1 and 2):

Pi(xo) = z He ;P j + €4(Xo) (1)
j=1

n
MAP(S) = D A ;P j + &(S) (2)
j=1

with n the number of the considered raingauges, €;(xy) and &;(S) the estimation errors
on F(xp) and MAP(S). The value of the weights y, ; and 4; ; are adjusted to minimise
the variance of the errors g;(xg) and &;(S) given some assumptions concerning the
spatial structure of the rainfall fields. Kriging is flexible in the sense that a large variety
of hypotheses about this spatial structure can be accounted for: observed anisotropy
of rainfall fields, general trends linked to the relief for instance, spatial rainfall structure
varying with seasons or rainfall types, etc. Nevertheless, ordinary kriging assumptions
are generally selected for interpolating rainfall rate fields (Chen et al., 2008), especially
when small time steps are considered. Moreover, accounting for anisotropy (Lebel
et al., 1987; Haberlandt, 2007) or trends (Kieffer-Weisse and Bois, 2002) does gen-
erally not show to improve significantly the interpolation accuracy, in particular in the
case of short time steps. Therefore, the following assumptions were done for the in-
terpolation model presented herein: (a) the spatial correlation structure (normalised
variogram or correlogram) is the same for every time step and rainfall events (clima-
tological kriging), (b) the variogram is isotropic, (c) the possible influence of altitude
and exposition is neglected for the interpolation (i.e. the interpolation is only based on
inter-distances), (d) a spherical variogram (Eq. 3) is used.

3 h 1 (h\®
v(h a, B) = a'[E'E_E'(E)]hS'B (3)
a h>p
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where y is the semi-variogram, A is the distance between two locations (inter-distance),
a is the sill (equal to unity in the case of climatological kriging, given the normalisation
with rainfall field standard deviation) and g is the range of the variogram (in km).

The main adjustment factor of this kriging model is the variogram shape and particu-
larly its range . Previous works conducted in the same region (Lebel et al., 1987) led
to the calibration of a relation between the time step considered and the range g for a
spherical variogram (Eq. 4). According to this relationship, the range of the variogram
of hourly rain rates is set equal to 25 km.

B(km) = 25A1%3 (4)

where g is the range (in km) and At is the time step (in hours) of the rainfall data. This
estimate of range appears to be well suited to the upper Loire river area when plotting
empirical variograms for heavy rainfall events (convective).

3.2 The rainfall interpolation errors and the error model
3.2.1  Model for interpolation errors

Interpolation models based on kriging deliver not only interpolated values but also an
estimate of the associated uncertainty through the computation of a theoretical in-
terpolation error variance o or a standard deviation ¢, also named kriging standard
deviation (Egs. 5 and 6).

Utz(xo) = E{e;(x0)?} (5)
07(S) = E{&,(5)%} (6)

When a climatological variogram y;; between points x; and x; (inter-distance d;;) is
used, the weights u; ; and 4; ; are supposed constant over the time if the raingauge
network remains unchanged. The kriging interpolation errors may then be normalised
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by the standard deviation of rainfall field SD;. The resulting normalised standard de-
viation 6; depends then only on the topology on the raingauge network, i.e. on the
configuration (distance, direction) and on the numbers of the surrounding raingauges.
Thus it may be constant over several time steps (Lebel et al., 1987) and constant over
the whole period in case of a stationnary network (no evolution of network and no
failure in data collection).

G(Xo) = 01(X0)/SD; (7)
6(S) = 0;(S)/SD; (8)

Errors 6(xy) and 6(S) (Egs. 7 and 8) can be minimised by the method of Lagrange
multipliers. The values é(xq) and ¢(S) are used to impose unbiased rainfall estimates:
>h,u=1and 37, A;=1(Egs.9and 10).

E(Xo) = Vio = D Mi¥yy Vi 9)
Jj=1

&S) =Vis — D AV Vi (10)
Jj=1

with y; o the normalised semi-variogram function depending on the distance / between
the locations / and /, y;s the average value of the semivariogram between the rain-
gauge x; and any point of the surface S (Eq. 11) and ysg the average value of the
semivariogram between the points of the surface S (Eq. 12).

Tis = 5 [ 7 - x)ax (1)

Vss = — / / 7(x - ') dxdx’ (12)
S2sls
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This ordinary kriging method with a climatological variogram yields:

6(Xo) = ZHVIO"‘f 0) (13)
= D AiVis — Vss + &(S) (14)
i=1

The model for normalised interpolation errors proposed here assumes that these errors
in estimates of both point and areal hourly precipitations, follow a zero-mean Gaussian
distribution whose standard deviation is 6; (depending on the available rain gauge
network at time ). A normalised standard deviation &(x,) (resp. 6(S)) lower than 0.5
means that more than 75% of rainfall field variance at the location x, (resp. on the
area) is explained (kriging standard deviation = 0.5; then kriging variance = 0.5%=0.25;
explained variance = 1-0.25=0.75). When it is lower than 0.7, more than 50% of the
observed signal is explained.

In Fig. 2, the distribution of theoretical normalised kriging standard deviation (x) for
point estimates is mapped for interpolated daily and hourly rainfall rates for the upper
Loire river catchment with the available network in the year 2003. It appears that for
hourly rain rates, the theoretical point kriging standard deviation is higher than 0.7 on
more than 50% of the study area. In other words, the spatial interpolation explains less
than 50% of the variance of the observed signal on more than half of the area.

Likewise, Fig. 3 shows the evolution over time of the proportion of the upper Loire
area where 6(x) for point rainfall estimates is lower than 0.5 or 0.7 (more than 75% or
50% of the variance of the signal is explained). Despite the increase of the density of
the raingauge network for the last 20 years, from 1 tipping bucket raingauge for 500 km?
to 1 for 80 km2, high uncertainties remain on point rainfall rates estimated through
spatial interpolation in many parts of the region, especially when short time steps are
considered (hourly rainfall rates). In other words, poor or even no information on the
hourly rain rates is available on the majority of the area. Nevertheless, the situation
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for MAP estimation uncertainties is generally less dramatic due to averaging especially
when large time steps and/or large areas are considered (Villarini et al., 2008). For
instance, in year 2003, the kriging standard deviation of MAP &(S) with all raingauge
available is 0.15 for the MAP computed on the catchment of Loire at Bas-en-Basset,
0.24 for catchment at Chambon-sur-Lignon and 0.32 at Rieutord.

3.2.2 Modelling temporal structure of interpolation errors

Possible time dependence between successive interpolation errors must be considered
in an error model to produce realistic error time series. At a given time, interpolation
errors are due to the spatial sampling that may not capture some features of the rainfall
field: typically over or under-estimations linked to the relative position of intense rainfall
cells and raingauges. If the time step is short according to the displacement of the
cells, the same type of error may affect several successive estimates. Interpolation
errors for both point and areal estimates may be dependent in time.

The dependence in time between hourly rain rate interpolation errors will be analysed
using the available raingauge measurements. Raingauges are removed in turn from
the network and the rainfall intensities computed at the corresponding location using
the remaining network (cross validation detailed in Sect. 4.1). The comparison of the
measured and computed intensities delivers series of hourly point rainfall estimation
errors. The temporal structure of these series can be then examined and simulated.

A linear autoregressive model has been first tested to reproduce the observed de-
pendence in time between these errors (Eq. 15).

Netr = PN+ \[(1 = 02) - Gt - Vi yq (15)

where 1, is the normalised interpolation error at time step ¢, p is the autocorrelation
coefficient between two successive errors, ; is the theoretical standard deviation of the
interpolation normalised error distribution and v,,4 a random variable with a standard
normal distribution.
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This model will be calibrated, tested and validated for point rainfall estimates. Without
reference values for MAPs, it is not possible to conduct the same tests and validations
for the errors on MAPs. As for the spatial interpolation model, the evaluation of its
adequacy can only rely on point rainfall validation.

Due to the linearity of both the kriging interpolation model and the autoregressive
(AR) model, the selected AR model for point rainfall errors will also hold for MAP errors
provided that its parameters — i.e. the autocorrelation coefficient — are independent on
the locations. In Eq. (15), &; is then considered equal to 6; s (MAP estimate) rather
thanto o, (point estimate). One of the goal of the validation of the error AR model will
therefore also be to verify the stability of o . Other rainfall estimation error models taking
into account the dependence in time have been suggested (Retham and Williams,
1988; Andrieu et al., 2003), but the proposed MAP estimation error model has the
advantage to be simple, robust and suited to the observed data as will be shown in the
coming section.

4 Step-by-step validation of this error model: example on the upper Loire river
area

4.1 Validation of hourly precipitation error model

The validation of the kriging interpolation model has two objectives: (a) first to verify if
the interpolated values can be considered as satisfactory and especially if they appear
to be unbiased and (b) to verify the theoretical interpolation normalised error model.
The related questions are the followings: Are the observed estimation error variances
consistent with the theoretical variances? Are the distributions of the interpolation
errors well approximated by Gaussian distributions with zero mean? In other word,
are these distributions fully determined by their standard deviation 67

Empirical point rainfall interpolation error at point x,, for the time step ¢ can be defined

as the difference between /Bf(xo), the estimated value at this point based on interpola-
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tion of values of the surrounding raingauges using the chosen variogram and F;(xg),
the “real” (measured if there is a raingauge, unknown if not) value of precipitation at
this point x, and at the time ¢.

A cross-validation approach was first conducted to check the consistency between
theoretical (i.e. given by proposed error model) and observed (i.e. difference between
measured and interpolated rainfall rate values) hourly point rainfall estimation nor-
malised error standard deviations. It consists in removing in turn one raingauge from
the network to compare the measured and interpolated rain rates at this specific site.
Then, the distribution of theoretical errors (obtained from error model) can be com-
pared with the distributions of empirical errors (differences between observations and
computed values). The validation can only be performed for point rainfall estimates,
i.e. the only estimates for which reference values (observations) are available for the
computation of estimation errors. This point cross-validation was carried out on the 40
raingauges available on this area.

A MAP is an weighted average of the linearly correlated point rainfall estimates.
Therefore, if the hourly point rainfall estimation errors appear to follow a zero-mean
Gaussian law with the theoretical kriging standard deviation at any location of the con-
sidered area, the hourly MAP estimation errors will also follow a zero-mean Gaussian
law with the theoretical kriging standard deviation.

Table 2 and Fig. 4 compare the theoretical zero-mean Gaussian normalised error
distributions and the observed hourly normalised rainfall interpolation error distribu-
tions for four validation raingauges, distributed over the upper Loire river catchment
area. First, a relatively good adequacy between empirical and theoretical distributions
can be observed. The results obtained for other gauges and for other periods — i.e.
other raingauge network structures, with a different 6 — are similar. It confirms that
the selected range of the variogram is well suited to the upper Loire river area and
that the observed normalised error distributions can be well approximated by a zero-
mean, Gaussian type distribution. Large normalised error values, especially negative
errors corresponding to an underestimation of the rainfall intensity, are nevertheless
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over-represented in the empirical validation set if compared to the theoretical Gaus-
sian distribution. This is particularly noticeable in Table 2, where proportions of values
comprised in the theoretical confidence intervals appear to be lower than the theo-
retical proportions. This is a common feature of rainfall interpolation techniques that
smooth the rainfall fields and tend to underestimate extreme local values (Fig. 5).

Considering the simplicity of the interpolation model (linear interpolation with one
parameter which is the variogram range) and of the error model (Gaussian error dis-
tributions), the validation results, still far from perfect, are nevertheless satisfactory. Of
course, the consistency between observed and theoretical point rainfall estimation nor-
malised errors is never perfect. But a good agreement at every validation gauge will
ensure that the theoretical MAP Gaussian normalised error model will deliver realistic
error ranges and distributions. The higher density of largely underestimated values in
the observed distributions, if compared to the theoretical Gaussian one, explains both
the bias and the higher standard deviation of the empirical error distributions. Overall,
the Gaussian theoretical interpolation error model gives a reliable image of the kriging
error distributions for interpolated hourly rain rates. It slightly underestimates the error
ranges and percentiles and hence will lead to underestimate the effect of these errors
on RR model outputs.

4.2 Validation of temporal dependence model

The simplest way to check if time dependence is correctly accounted for by the pro-
posed model consists in comparing theoretical (simulated) and observed (empirical)
estimation errors for rainfall amounts cumulated over several time steps. As far as the
temporal dependence model is concerned, the first objective of the cross-validation is
a comparison of theoretical and observed estimation error distributions for point rainfall
amounts cumulated over a large range of time steps with an autocorrelation coefficient
o adjusted for each location. The second objective is the verification that this coeffi-
cient p is not too much dependent on the location in order to be able to extrapolate the
model to MAP errors.
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The distributions of modelled and empirical normalised interpolation errors for rainfall
amounts, cumulated over various time steps, are first compared to adjust the correla-
tion coefficient and assess the reliability of the proposed temporal dependence model.
Such a comparison is shown in Fig. 6 for the Machabert validation raingauge. Monte
Carlo runs based on Eq. (15) are used to simulate series of hourly rain rate inter-
polation errors and then to build their distribution for various accumulation durations.
The impact of the correlation coefficient on the error series structure and especially on
the error distributions of rainfall amounts cumulated over more than one hour is clearly
noticeable in Fig. 6. The comparison with the distributions of observed errors clearly re-
veals the necessity of taking into account the time-dependence of interpolation errors
and the adequacy of the proposed time-dependence model. This adequacy is con-
firmed for other validation raingauges (Table 3). In most cases, the proposed model
reproduces the evolution of the interpolation error distributions for rainfall amounts cu-
mulated over a large range of time steps and for various locations of the raingauge
network (not shown). Moreover, the correlation coefficient appears not to be too much
dependent on the location in space, which is another very positive result of this cross-
validation. Even if far from perfect, the proposed error model appears to be able to
generate reliable point rainfall estimation error series. Although it could not be directly
verified, according to the properties of the model presented in the previous section
and to the stability of the temporal correlation coefficient, it can be assume that the
proposed model certainly also provides reliable MAP estimation error series. The se-
lected constant correlation coefficient (0.6) has been adjusted to slightly underestimate
the quantiles of the error distributions at all the validation sites (Table 3). The error
model will have a general tendency to underestimate the rainfall estimation errors and
hence their effects on RR simulations.
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5 Propagation of rainfall uncertainties through rainfall-runoff models

The interpolation error model is now selected and at least verified on point values —
since its validity for MAP could not be completely tested. Monte Carlo runs are now
implemented to simulate different scenarios of possible hourly MAP series correspond-
ing to the available point rainfall measurements. These scenarios are then propagated
into calibrated RR models to evaluate the impact of rainfall estimation uncertainties on
RR simulation results and hence on RR modelling efficiency.

5.1 Methodology
5.1.1 Rainfall-runoff modelling

The choice of adapted RR models is not the focus of the present study. A large body of
scientific literature has been devoted to this question. Most of the authors came to the
conclusion that the data sets routinely available in hydrology support the development
of models with only limited complexity — i.e. the calibration of models with a limited
number of parameters, typically 4 to 8 (Jakeman and Hornberger, 1993; Perrin et al.,
2001).

For these reasons, it has been decided to use robust lumped conceptual RR models
run on a continuous basis. According to both the available rainfall data and to the time
to peak of the considered catchments — between 3 and 18 h —, an hourly time step was
selected for the computations. An automatic local optimisation multi-start algorithm is
used for the calibration of the models (Edijatno et al., 1999; Mathevet, 2005). Itis based
on a gradient search procedure to evolve step by step in the parameter space towards
the optimum parameter values, corresponding to a maximisation of the objective func-
tion used. The selected objective function is the standard Nash and Sutcliffe (1970)
efficiency on streamflow values (Eq. 16). A split sample test procedure (Klemes, 1986)
is used to evaluate the performances of the models. The test consists in dividing the
total period of the available data set into sub-sets. One is used for the calibration of the
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parameters and the others for the evaluation of the model performances in a validation
mode. The periods can be exchanged to multiply the number of validation tests. The
Nash and Sutcliffe efficiencies obtained on the validation data sets are considered in
order to evaluate the performances of the models.

ST (Qs(t) - Q)
ST Qo) = Qult)))?

where Q(t;) and Q,(t;) are the simulated and observed streamflows at time step /, n
is the number of time steps in the period, and Q,(t;) is the mean observed streamflow
during this period. This Nash-Sutcliffe efficiency criterion takes its values in the interval
[-o0, 1].

The four-parameter GR4J model and the modified eight-parameter TOPMO model
(Perrin et al., 2003; Mathevet, 2005) based on Topmodel (Beven and Kirby, 1979), have
been selected to study the influence of MAP interpolation uncertainties. A comparison
with other RR models on the upper Loire river data set has shown that these two
models had on average the best performances (Moulin, 2007).

NSE = 1 - (16)

5.1.2 Simulated rainfall scenarios and their properties

To assess the impact of MAP uncertainties on streamflow simulations, Monte-Carlo
simulations were conducted: 100 “possible” scenarios of MAP were generated with the
above defined time-dependent error model for MAPs. These scenarios were then used
as input for the RR models. Figure 7 presents the ranked highest simulated MAP errors
for each of the 100 scenarios. The range and statistical distributions of these errors
appear to vary depending on the catchment, and especially on its area, in a complex
way linked both to the spatial and temporal dependencies and to the structure of the
raingauge network. The maximum simulated MAPs and hence MAP error values affect
the smaller catchments as illustrated in Figs. 7 and 8. This is due to the smoothing
effect related to averaging that increases as the catchment area grows and tends to
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reduce the variance of the computed MAPs. Another important and less obvious result
appears on Fig. 8: the relative errors (divided by either measured or median values)
on estimated hourly MAPs have a tendency to increase with the catchment areas.
The ratio between the maximum computed MAP (about 50 mm/h) at Rieutord and the
width of its estimated 90% confidence interval (about 20 mm/h) is of 40%. It is close
to 50% for the Chambon-sur-Lignon catchment (respectively 28 mm/h and 14 mm/h)
and to 100% for the Bas-en-Basset catchment (respectively 18 mm/h and 18 mm/h).
This tendency is observed for all the MAP quantiles. To summarise, absolute errors
on MAPs decrease while relative errors on MAPs increase when the considered area
increases. Apparently MAP errors are less affected by the smoothing effect due to
averaging than the MAPs themselves.

The consequences on simulated peak streamflows are difficult to anticipate and will
therefore be tested trough numerical simulations. If the RR models were linear and if
the RR relation was independent on the scale, the results would be similar for simulated
streamflow relative errors (i.e. higher relative errors for larger catchments). But the RR
relation is non-linear; its smoothing or amplification effect on input errors may depend
on the absolute values of the MAPs which vary with the catchment size. Moreover, the
RR relation depends on the catchment size and especially on the time of concentration
of the catchment. The RR smoothing effect has a general tendency to increase with
the area of the catchment since the streamflows result from an averaging of a larger
amount of local processes over a longer period of time.

5.1.3 Impact assessment of MAP scenarios propagation in RR models

The 100 MAP scenarios were propagated into the two calibrated RR models for the
three test catchments. A particular attention has been drawn to the width of the simu-
lated streamflow uncertainty ranges in the analysis of the results. A specific criterion
has been used to measure the sharpness of the streamflow simulation: the root mean
square range criterion (RMSR, Eq. 17) between predefined percentiles of rainfall or
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streamflow scenarios distribution.

RMSR(80%) = Z V Keolty) = Xiolt)))2 (17)

where RMSR(80%) is the criterion on the variable X (precipitation or streamflow) for
the confidence interval 80%, n is the number of the time step, and X,4(¢;) and Xy (Z;)
are the percentiles 10% and 90% of the variable X for the time ¢;,. As a complement,
the standard Nash and Sutcliffe criterion between percentile 50% and measured values
(Eqg. 16) give an estimation of accuracy on the estimates.

5.2 Results and discussion: impact on streamflow simulations
5.2.1 Sharpness of RR simulations

For each of the three catchments, the RMSR value was computed for both rainfall and
streamflow series, and for various confidence intervals (Table 4). When comparing
RMSR on streamflows (in mm/h) with RMSR on precipitation (in mm/h), it appears
that this ratio increases with decreasing catchment areas: RMSR on streamflow repre-
sent roughly 28% of RMSR on precipitation for the catchment of the Loire at Rieutord
(62 km2), 15% for the Lignon at Chambon-sur-Lignon (139 km2) and around 7% for the
Loire River at Bas-en-Basset (3234 km2). There is roughly no difference in sharpness
between the two tested RR models.

This confirms the foreseen higher smoothing effect of the RR process for large catch-
ments — at least, simulated by the RR models. As shown in Fig. 9, the 90% relative
confidence intervals on simulated streamflows do not appear to depend anymore on
the catchment: the ratio between the width of the confidence interval and the simulated
streamflow values is stable and close to 50%. As a first conclusion of the MAP uncer-
tainty propagation exercise, it comes out that, for different reasons, uncertainties in
MAP estimations equally affect streamflow simulations independently of the catchment
area.

2086

HESSD
5, 2067-2110, 2008

Impact on streamflow
simulations of
uncertainties on MAP

L. Moulin et al.

I b i


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/2067/2008/hessd-5-2067-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/2067/2008/hessd-5-2067-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

5.2.2 Accuracy of RR simulations

Overall, the computed 90% confidence intervals on simulated streamflow series are
large. These confidence intervals have been reported on Fig. 10, along with both the
measured hydrographs and the ranges of the simulated hydrographs for one of the
major flood events in the record period for the upper Loire river area. The impact of the
MAP uncertainties on the streamflow simulations appears to be dramatic. The upper
bound of the 90% simulated confidence interval is about 1.5 times higher than the lower
bound. Even if the RR models were perfect, which they are of course far from, MAP
estimation uncertainties set a relatively low limit to the accuracy of streamflow simula-
tions or forecasts. Moreover, the measured hydrograph appears to be contained in, or
very close to, the 90% confidence interval for the two examples presented in Fig. 10:
i.e. the distance between simulated and measured hydrographs may be explained by
errors in the estimation of MAPs. Similar observations are made for all the catchments
and simulated streamflow series.

Table 5 gives the proportion of measured streamflows comprised in the computed
90% confidence limits for the whole test period (20-27 years) and the three catch-
ments. A large proportion of measured streamflows appears to be comprised in this
confidence interval. This is particularly true during severe flood events (observed
streamflow greater than 10 times the mean annual streamflow) and when a tolerance of
plus or minus 20% is considered for the measured streamflows. This tolerance stands
for both the streamflow measurement uncertainties and the level of efficiency of RR
models expected by operational forecasters. For the smallest catchments (Rieutord,
Chambon-sur-Lignon), the simulated 90% confidence interval contains almost 90% of
the measured streamflow values when a tolerance factor of 20% is considered (Ta-
ble 5). In other words, rainfall estimation uncertainties may explain a large part of the
differences between measured and simulated streamflows. Rainfall estimation uncer-
tainties appear in this case as a major factor limiting the accuracy of streamflow sim-
ulations. Conversely, according to the existing uncertainties on estimated MAPs and
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their impact on RR simulations, RR simulation accuracy will hardly be improved without
a significant reduction of the MAP estimation errors. This pleads for an improvement
of the rainfall measurement networks and techniques.

For the larger catchment of the Loire river at Bas-en-Basset, uncertainties on MAP
are nevertheless far from explaining all of the RR modelling errors. In this last case,
other error sources seem to affect significantly the RR simulations. A detailed analysis
of the simulated and observed hydrographs reveals delays and apparent fluctuations of
both the runoff rates and the times-to-peak between events. That undoubtedly can be
attributed, to a great extent, to the spatial repartition of the rainfall. Higher runoff rates
are generally observed during convective events when the rainfall is concentrated on
a limited part of the catchment if compared to stratiform events with a homogeneous
rainfall repartition. Likewise, the time-to-peak depends on the location of the rain cells
on the catchment and their distance from the outlet for convective rainfall events. The
tested lumped modelling approach becomes here limited. For larger catchment areas,
according to the results presented herein, the use of distributed or semi-distributed
hydrological models might bring some improvements to the RR simulations. Neverthe-
less, this possible gain should be put into perspective by considering the number of
calibrated parameters: problems as over-parametrisation might emerge.

As a conclusion to this MAP uncertainty propagation excercise, a large part of the
streamflow simulation errors may be attributed to MAP estimation errors, except on
large catchments (typically areas over 500 km2) where the shape of the hydrograph
can be influenced by the spatio-temporal pattern of the rainfall event, and where a
spatialised modelling approach might bring improvement if compared to the tested
lumped models. Even if the RR models were perfect, MAP estimation uncertainties are
clearly a major constraint on both accuracy and sharpness of stream flow simulations
or forecasts.
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6 Summary and conclusions

The objective of this study was twofold: to propose a reliable estimate of MAP uncer-
tainties when MAPs are obtained through the interpolation of raingauge measurements
and investigate the possible impact of MAP estimation errors on RR simulations.

If compared with previous published results on the same issue, the main originality
of this study lies in the development and partial validation of a reliable error model
(consistent with data) to represent uncertainties on MAP. Whereas most of the previous
studies use either completely empirical error estimations or a priori error models, we
propose a time-dependent error model based on geostatistics and validated to the
greatest possible extent.

Monte Carlo simulations based on this error model reveal that uncertainties on MAP
estimations induce large uncertainties in RR simulations. For different reasons, all
the tested catchments are equally affected by this phenomenon: the relative size of
the computed confidence interval is independent on the catchment area. The higher
relative error values on MAPs are compensated by a higher smoothing effect of the RR
transformation when larger catchment areas are considered.

The comparison with measured streamflows shows that a large part of the lumped
RR simulation errors may be explained by the uncertainties on MAP estimations. This
is particularly true for the two smallest catchments studied, whereas on the larger
catchment the shape of the hydrograph can be influenced by the spatio-temporal pat-
tern of the rainfall event and distributed RR models may bring an improvement if com-
pared to the tested lumped models. This implies that for a certain range of catchment
areas (up a few hundred square kilometers), MAP estimation uncertainties drastically
restrict the possible accuracy of streamflow simulations and set a limit to both future
developments and improvements of RR models. Even in an optimal situation — good
quality and long datasets, intensive effort for RR model selection and calibration — RR
simulation errors can hardly be reduced without a significant improvement of the rainfall
measurement networks and techniques.
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From a practical point of view, operational forecasting services should be aware of
these limits to efficiently use the RR models and if possible evaluate the RR simula-
tion uncertainties in real time to be able to deliver confidence intervals along with their
traditional deterministic forecasts. Ensemble or Monte Carlo forecasts are now used
routinely in meteorological forecasting; there is no reason why they should be disre-
garded by hydrologists. The error scenario simulation model developed here could
help to build such ensemble forecasts in the case where MAP amounts are estimated
through a rain gauge network. The same type of model is still to be developed for the
case where quantitative radar estimations are used.
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Table 1. Main hydroclimatic characteristics of the three studied catchments (P: mean annual
precipitation; Q: mean annual flow; Q,,: decennial flow).
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Drainage Period P Q P/Q Q1o
River area (km?) ofrecord (mmfy) (mm/y,[m®/s]) (m>/s/km?)
Loire at Rieutord 62 1983-2002 1530 1420 [2.7] 0.90 5.6
Lignon at Chambon 139 1977-2003 945 726 [3.2] 0.77 14
Loire at Bas-en-Basset 3234 1977-2003 900 364 [37.3] 0.40 0.4
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Table 2. Percentage of computed interpolation errors comprised in various theoretical confi-

dence intervals for four raingauges.
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Raingauge 68% Cl (x0) 95% Cl (x20) 99.7% CI (£30)
Fay 53.5 77.3 89.8
Goudet 59.4 80.7 90.3
Machabert 63.1 84.8 93.4
Mazet 59.8 81.8 91.0
Theoretical value 68.0 95.0 99.7
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Table 3. Standard deviations of the empirical normalised error on mean intensities over various
durations: observed (normalised errors obtained with the cross validation) and simulated with

time-dependent error model. A constant correlation coefficient is equal to 0.6.
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Time step Fay Goudet Machabert Mazet

(hours)  Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim.

1 1.05 074 076 066 076 0.77 0.97 0.69

2 095 065 066 058 069 068 0.72 0.61

4 0.79 054 055 049 055 056 0.57 0.51

6 0.70 047 049 042 048 049 047 044

12 058 036 039 033 040 038 036 0.34

24 049 026 029 024 032 027 028 0.24
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Table 4. Root mean square range (RMSR) of hourly precipitation (P in mm/h) and on stream-

flow (Q in mm/h) scenarios as a measure of uncertainty.
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50% 80% 90% 95% 100% Ratio Q/P

Rieutord P 0.278 0.514 0.644 0.749 0.982

Rieutord Q GR4J 0.078 0.148 0.186 0.217 0.279 ~28%

Rieutord Q TOPM 0.076 0.145 0.182 0.212 0.275 ~28%

Chambon P 0.244 0.433 0.536 0.619 0.794

Chambon Q GR4J 0.036 0.067 0.085 0.097 0.126 ~15%

Chambon Q TOPM 0.037 0.068 0.085 0.098 0.126 ~15%
Bas-en-Basset P 0.194 0.360 0.447 0.515 0.660
Bas-en-Basset Q GR4J 0.012 0.024 0.030 0.038 0.051 ~7%
Bas-en-Basset Q TOPM 0.011 0.022 0.028 0.035 0.044 ~7%
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Table 5. Proportion (in %) of the observed values comprised in the 90% simulated confidence
interval, with and without a 20% tolerance on observed streamflow values (in [ ] in case of a
tolerance of 20% but without taking into account uncertainties on MAP). Q is the mean stream-

flow; Q4, is an estimate of the decennial streamflow.
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Rieutord
Qobs Qobs £20%  Qobs

Chambon

Qobs +20%

Bas-en-Basset
Qobs Qobs +20%

All data
Oobs >1 OO
Oobs>010

222 553 [39.0] 186
342 687 [42.0] 284
66.7 100.0 [33.0] 475

420 [24.2]
536 [24.7]
65.0 [40.0]

10.9 28.0 [15.4]
21.9 50.6 [28.9]
77.8 889 [33.3]
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Fig. 1. The upper Loire river catchment at Bas-en-Basset (3234 km2) with two subcatchments
shown in gray: the Loire river at Rieutord (62 km2) and the Lignon river at Chambon-sur-Lignon
(139 km2). Raingauges stations indicated correspond to the hourly network available in 2003.

2100

it

(&)
()


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/2067/2008/hessd-5-2067-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/2067/2008/hessd-5-2067-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

2060
1

2020 2040
1 1

Y Lambert II (km)

2000
1

1980
1

680 700 720 740 760

X Lambert II (km)

Fig. 2. Maps of theoretical normalised kriging standard deviation (&) for the network over the
upper Loire river catchment area available in 2003 and for two time step: daily time step (left)

and hourly time step (right).
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Fig. 3. Evolution of the percentage of the upper Loire river area where the theoretical nor-
malised kriging standard deviation is lower than 0.5 (75% of variance is explained) or 0.7 (50%
of variance is explained) for the cases of both dayly and hourly time step.
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Fig. 4. Comparison between the distributions of theoretical and empirical (obtained with cross-
validation and represented as histograms) normalised rainfall estimation errors for four rain
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Fig. 5. Point hourly precipitations ranked in ascending order versus corresponding interpolated
values (cross validation) and associated errors (from the proposed Gaussian error model) at

Mazet rain gauge.
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Fig. 6. Comparison between observed (crosses and triangles) and simulated (lines) interpo-
lation error quantiles for rainfall accumulations over 1 to 24 h at Machabert (left: no temporal
dependence; right: temporal dependence with a correlation of 0.6).
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Fig. 7. Distribution of higher errors on MAP generated for each one of 100 scenar-
ios and for each one of the three catchments of upper Loire river (rieu = Rieutord
(62km?); cham = Chambon-sur-Lignon (139km?); basb = Bas-en-Basset (3234 km?); flood
of 11 November 1996).
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Fig. 8. Percentiles of uncertainty on MAP for Rieutord (left), Chambon-sur-Lignon (center) and
Bas-en-Basset (right).
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Fig. 9. Percentiles of uncertainty on streamflow (mm/h) for Rieutord (left), Chambon-sur-Lignon
(center) and Bas-en-Basset (right). “+” indicate measured values versus median of simulated
values.

(8)
@

o
2

2108


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/2067/2008/hessd-5-2067-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/2067/2008/hessd-5-2067-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

[=]
(=
[=]
o™ [=]
g ]
=+
o
o_]
‘Le o
_— o
) _
b} L
E o )
= o £
3 27 z 2]
5} g™
[==]
o — o
n S
o o
| | | [ [ ] | | ] I I I
165350 165370 165390 165410 165340 165380 165420
Time(h) Time(h)
Bas-en-Basset (3234 km2) Chambon (139 km2)

Fig. 10. Two examples of observed flood hydrographs (black lines), 90% confidence interval
for the simulated streamflow (grey lines) and limits of the simulated streamflow values obtained
after 20 Monte carlo runs. Flood of 11 November 1996 at Bas-en-Basset (3234 km?, left) and
Chambon-sur-Lignon (139 km?, right).
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Fig. 11. Relation between uncertainty on MAP and uncertainty on streamflow. “+” indicates
cases where observed streamflow is comprised in 90% confidence interval (percentages are
indicated at the bottom of figures).
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